Laser-Induced Spectral-Selective Autofluorescent Microscopy as a Prospective Method of Research in Biomedicine


Autofluorescence Microscopy

How to Cite

Kozan, N., Savka, I., Kryvetskyi, V., & Oliynyk, I. (2020). Laser-Induced Spectral-Selective Autofluorescent Microscopy as a Prospective Method of Research in Biomedicine. Galician Medical Journal, 27(4), E202048.


In modern medical diagnostics, optical methods of studying living tissues have become widespread and are collectively called "optical biopsy". One such method is autofluorescence microscopy, which provides additional information about the structural and functional features of the sample. In this paper, an analysis of existing data was performed on the properties of autofluorescence of cells and tissues to evaluate the available instrumental systems and methods for monitoring autofluorescence and the potential for its application in the biomedical field.

Over the past few years, advanced optical-electronic methods have become available to detect various pathological conditions of tissues and environments of the human body by evaluating signals emitted by endogenous fluorophores. Because these molecules are often involved in basic biological processes, they are important parameters for checking the condition of cells and tissues. In our opinion, analytical methods based on autofluorescence monitoring have great potential in both research and diagnosis, and interest in the use of these new analytical tools is constantly growing. Methods based on autofluorescence can give more information about the object under study with relatively lower costs and less diagnostic error.


Albrecht C. Joseph R. Lakowicz: Principles of fluorescence spectroscopy, 3rd Edition. Analytical and Bioanalytical Chemistry [Internet]. 2008 Jan 16;390(5):1223–1224. Available from:

Stockert JC, Blazquez-Castro A. Fluorescence Microscopy in Life Sciences [Internet]. Bentham Science Publishers; 2017. Available from:

Ghosh A, Karedla N, Thiele JC, Gregor I, Enderlein J. Fluorescence lifetime correlation spectroscopy: Basics and applications. Methods [Internet]. 2018 May;140-141:32–39. Available from:

Valeur B. Molecular Fluorescence. Digital Encyclopedia of Applied Physics [Internet]. 2009 Dec 15:477–531. Available from:

Feofanov AV. Spektral'naja lazernaja skanirujushhaja konfokal'naja mikroskopija v biologicheskih issledovanijah. Uspehi biologicheskoj himii. 2007;47:371-410. Available from:

Croce A, Bottiroli G, Santin G, Pacchiana G, Vezzoni P, Di Pasquale E. Autofluorescence and metabolic signatures in a pig model of differentiation based on induced pluripotent cells and embryonic bodies. microscop [Internet]. 2014Sep.30 ;21(1):52-59. Available from:

Ivanova SV, Kirpichenok LN. Ispol'zovanie fluorescentnih metodov v medicine. Medicinskie novosti. 2008;12:56-61.

Salmin V. UF lazer-inducirovannaja autofluorescentnaja spektroskopija dlja medicinskoj diagnostiki. Saratov State University; 2012.

Kuznecova A. Issledovanie autofluorescencii biotkani pri pomoshhi chislennogo modelirovanija metodom Monte-Karlo. In: Sbornik trudov IV Vserossijskogo kongressa molodyh uchenih. Sankt-Peterburg; 2015. p. 230–232.

Babkina AS. Laser-Induced Fluorescence Spectroscopy in the Diagnosis of Tissue Hypoxia (Review). General Reanimatology [Internet]. 2019 Dec 24;15(6):50–61. Available from:

Monici M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnology Annual Review [Internet]. 2005;11:227–256. Available from:

Turchin IV. Methods of biomedical optical imaging: from subcellular structures to tissues and organs. Uspekhi Fizicheskih Nauk [Internet]. 2016;186(5):550–567. Available from:

Kraevoj S, Koltovoj N. Fluorescentnye metody v medicine. Kniga 11. Moskva; 2014. 228 p.

Makarov MS. Fljuorescencija v issledovanii kletok: puti i vozmozhnosti. Molekuljarnaja medicina. 2013;(4):10-14.

Tajiri H. Autofluorescence endoscopy for the gastrointestinal tract. Proceedings of the Japan Academy, Series B [Internet]. 2007;83(8):248–255. Available from:

Deal J, Mayes S, Browning C, Hill S, Rider P, Boudreaux C, et al. Identifying molecular contributors to autofluorescence of neoplastic and normal colon sections using excitation-scanning hyperspectral imaging. Journal of Biomedical Optics [Internet]. 2018 Dec 27;24(02):1. Available from:

Tomka Y, Gorsky M, Soltys I, Talakh M, Drin Y, Yatsko O, et al. Spectral and selective laser autofluorescent microscopy of blood films. Novel Optical Systems, Methods, and Applications XXII [Internet]. 2019 Sep 9:41. Available from:

Buchwalow I, Atiakshin D, Samoilova V, Boecker W, Tiemann M. Identification of autofluorescent cells in human angioimmunoblastic T-cell lymphoma. Histochemistry and Cell Biology [Internet]. 2017 Dec 2;149(2):169–177. Available from:

Sergeeva EA. Diagnostika mіokarda in situ: vozmozhnosti opticheskoj biopsii. Sibirskij medicinskij zhurnal. 2016;31(2):114-116.

Morgan ML, Kaushik DK, Stys PK, Caprariello AV. Autofluorescence spectroscopy as a proxy for chronic white matter pathology. Multiple Sclerosis Journal [Internet]. 2020 Aug 11;:135245852094822. Available from:

Protsiuk V, Vasiuk V, Vasilchysin Y, Kvasnyuk D, Ushenko A, Shaplavskiy M, et al. Differential diagnosis of aseptic and septic loosening of an artificial hip joint endoprosthesis cup using spectral-selective laser autofluorescence microscopy. In: Angelsky O V., editor. Fourteenth International Conference on Correlation Optics [Internet]. SPIE; 2020. p. 76. Available from:

Arutjunjan AV, Cherdancev DV, Salmin VV, Skomoroha DP, Salmina AB. Intraoperacionnaja lazer-inducirovannaja fluorescentnaja spektroskopija pri jeksperimental'nom pankreatite. Sibirskoe medicinskoe obozrenie. 2012;77(5):20-24.

Pantalone D, Andreoli F, Fusi F, Basile V, Romano G, Giustozzi G, et al. Multispectral Imaging Autofluorescence Microscopy in Colonic and Gastric Cancer Metastatic Lymph Nodes. Clinical Gastroenterology and Hepatology [Internet]. 2007 Feb;5(2):230–236. Available from:

Zhang DY, Singhal S, Lee JYK. Optical Principles of Fluorescence-Guided Brain Tumor Surgery: A Practical Primer for the Neurosurgeon. Neurosurgery [Internet]. 2018 Jul 30;85(3):312–324. Available from:

Chang SW, Donoho DA, Zada G. Use of optical fluorescence agents during surgery for pituitary adenomas: current state of the field. Journal of Neuro-Oncology [Internet]. 2018 Dec 6;141(3):585–593. Available from:

Göröcs Z, Rivenson Y, Ceylan Koydemir H, Tseng D, Troy TL, Demas V, et al. Quantitative Fluorescence Sensing Through Highly Autofluorescent, Scattering, and Absorbing Media Using Mobile Microscopy. ACS Nano [Internet]. 2016 Sep 19;10(9):8989–8999. Available from:

Bachinskiy V, Boichuk T, Ushenko A. Laser polarimetry of biological tissues and fluids. LAP LAMBERT Academic Publishing; 2017. 204 p.

Bachynskyi V, Garazdiuk M, Vanchuliak O, Bezhenar I, Garazdiuk O. Post mortem interval estimation: features of cerebrospinal fluid films autofluorescent laser polarimetry. Fol Soc Med Leg Slov. 2016;6(2):67-72.

Sarkisova YuV, Harazdiuk MS, Palyvoda OH, Andriichuk AO. Cpektralno-selektyvna lazerna avtofluorestsentna mikroskopiia preparativ amorfnoi skladovoi sklopodibnoho tila oka liudyny u diahnostytsi davnosti nastannia smerti. In: Aktualni problemy morfolohii v teoretychnii ta praktychnii medytsyni. Chernivtsi: BSMU; 2019. p. 90–91.

Boichuk TM, Bachinskiy VT, Vanchuliak OY, Minzer OP, Garazdiuk M, Motrich A V. Statistical and fractal analysis of autofluorescent myocardium images in posthumous diagnostics of acute coronary insufficiency. In: Mohseni H, Agahi MH, Razeghi M, editors. Biosensing and Nanomedicine VII [Internet]. 2014. Available from:

Ushenko OG, Syvokorovskaya A-V, Bachinsky VT, Vanchuliak OY, Dubolazov AV, Ushenko YO, et al. Laser Autofluorescent Microscopy of Histological Sections of Parenchymatous Biological Tissues of the Dead. In: 4th International Conference on Nanotechnologies and Biomedical Engineering [Internet]. 2019. p. 507–511. Available from:

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.