Effect of Hyperglycemia on the Excretory Ducts of the Submandibular Gland (Histologic Study)

Hanna Ersteniuk, Taras Kotyk, Nilanjan Dey, Omelian Yurakh, Oksana Popadynets


The paper highlights the peculiarities of histological changes in different subdivisions of the intralobular duct of the submandibular gland in rats in case of experimental hyperglycemia.

Materials and methods. The study included 40 male Wistar rats weighing 230 to 250g. Experimental hyperglycemia was induced by a single intraperitoneal administration of streptozotocin. Biochemical and morphological investigations were conducted; the morphometric analysis was carried out.

Results. Since the 28th day of the experiment, on the background of dynamic increase in the levels of glucose and glycated hemoglobin in the blood, there was observed the development of dystrophic changes in epithelial cells of the granular and striated ducts being accompanied by a gradual decrease in epithelial cell height by 10.28 – 29.46% and 10.77 – 28.28%, respectively. Morphological changes in the intercalated ducts were detected later – since the 42nd day of the experiment and the decrease in their epithelial cell height – by 15.60%, was seen on the 70th day only.

Conclusions. Morphological changes in different subdivisions of the intralobular duct are of dystrophic nature and can be histologically detected since the 28th day of the experiment; they depend on the duration of hyperglycemia and are accompanied by a dynamic decrease in epithelial cell height.


hyperglycemia; submandibular gland; excretory ducts

Full Text:



Alberti KGMM, Zimmet P. Global burden of disease--where does diabetes mellitus fit in? Nat Rev Endocrinol. 2013;9(5):258–260. DOI: http://doi.org/10.1038/nrendo.2013.54

Ginter E, Simko V. Type 2 diabetes mellitus, pandemic in 21st century. Adv Exp Med Biol. 2012;771:42–50. [PMid: 23393670]

Srivastava PK, Srivastava S, Singh AK, Dwivedi KN. Role of ayurveda in management of diabetes mellitus. Int Res J Pharm. 2015;6(1):8–9. DOI: http://doi.org/10.7897/2230-8407.0613

Bakris G, Blonde L, Boulton AJM, de Groot M, Greene EL, Henry R, et al. 2. Classification and Diagnosis of Diabetes. Diabetes Care. 2015;38(Supplement_1):S8–S16. DOI: http://doi.org/10.2337/dc15-S005

Moore PA, Guggenheimer J, Etzel KR, Weyant RJ, Orchard T. Type 1 diabetes mellitus, xerostomia, and salivary flow rates. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;92(3):281–291. DOI: http://doi.org/10.1067/moe.2001.117815

De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM. Endothelial dysfunction in diabetes. Br J Pharmacol. 2000;130(5):963–974. DOI: http://doi.org/10.1038/sj.bjp.0703393

Hadi HAR, Suwaidi JAl. Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag. 2007;3(6):853–876. [PMid: 18200806]

Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137–188. DOI: http://doi.org/10.1152/physrev.00045.2011

Busato IMS, Ignácio SA, Brancher JA, Grégio AMT, Machado MAN, Azevedo-Alanis LR. Impact of xerostomia on the quality of life of adolescents with type 1 diabetes mellitus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(3):376–382. DOI: http://doi.org/10.1016/j.tripleo.2009.05.005

Fedirko NV, Kruglikov IA, Kopach OV, Vats JA, Kostyuk PG, Voitenko NV. Changes in functioning of rat submandibular salivary gland under streptozotocin-induced diabetes are associated with alterations of Ca2+ signaling and Ca2+ transporting pumps. Biochim Biophys Acta. 2006;(3)1762:294–303. DOI: http://doi.org/10.1016/j.bbadis.2005.12.002

Lamster IB, Evanthia L, Borgnakke WS, Taylor GW. The relationship between oral health and diabetes mellitus. J Am Dent Assoc. 2008;139:19–24

Wang Di, Yuan Z, Inoue N, Cho G, Shono M, Ishikawa Y. Abnormal subcellular localization of AQP5 and downregulated AQP5 protein in parotid glands of streptozotocin-induced diabetic rats. Biochim Biophys Acta - Gen Subj. 2011;1810(5):543–554. DOI: http://doi.org/10.1016/j.bbagen.2011.01.013

Catalán MA, Nakamoto T, Melvin JE. The salivary gland fluid secretion mechanism. J Med Invest. 2009;56:192–196. [PMid: 20224180]

Tandler B, Nagato T, Toyoshima K, Phillips CJ. Comparative Ultrastructure of Intercalated Ducts in Major Salivary Glands: A Review. Anat Rec. 1998;91(February):64–91

Proctor GB, Carpenter GH. Salivary secretion: Mechanism and neural regulation. Monogr Oral Sci. 2014;24:14–29. DOI: http://doi.org/10.1159/000358781

Ishibashi K, Hara S, Kondo S. Aquaporin water channels in mammals. Clin Exp Nephrol. 2009;13(2):107–117. DOI: http://doi.org/10.1007/s10157-008-0118-6

Anderson LC, Suleiman AH, Garrett JR. Morphological effects of diabetes on the granular ducts and acini of the rat submandibular gland. Microsc Res Tech. 1994;27(1):61–70. DOI: http://doi.org/10.1002/jemt.1070270105

Yavorska-Skrabut IM, Herasymiuk IIe. Dynamika morfometrychnykh zmin struktur velykykh slynnykh zaloz shchuriv za umov eksperymentalnoi hiperhlikemii. Galic’kij likars'kij Visn. 2013;20(1 part 2):100–102

Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes (Text with EEA relevance). Off J Eur Union. 2010;L 276:33–79

García HF, García-Poblete E, Moro-Rodríguez E, Catalá-Rodríguez M, Rico-Morales M, García-Gómez de las Heras MS. Histomorphometrical study of the submandibular gland ductal system in the rat. Histol Histopathol. 2002;17:813–816

Gresik E. The granular convoluted tubule (GCT) cell of rodent submandibular glands. Microsc Res Tech. 1994;27(1):1–24

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. DOI: http://doi.org/10.1038/nmeth.2089

R Core Team. R: A Language and Environment for Statistical Computing. 2015

Yeroshenko HA, Tsukanov DV, Shepitko IV, Hnidets VA. Morfometrychna kharakterystyka slynnykh zaloz shchuriv pislia vvedennia prozerynu i platyfilinu. Svit Medytsyny Ta Biolohii. 2011;(3):7–10

Cutler LS, Pinney HE, Christian C, Russotto SB. Ultrastructural studies of the rat submandibular gland in streptozotocin induced diabetes mellitus. Virchows Arch A. 1979;382(3):301–311

Fowler MJ. Microvascular and Macrovascular Complications of Diabetes. Clin Diabetes. 2011;29(3):116–122. DOI: http://doi.org/10.2337/diaclin.29.3.116

Oikawa J, Ukawa S, Ohira H, Kawamura T, Wakai K, Ando M, et al. Diabetes Mellitus is Associated With Low Secretion Rates of Immunoglobulin A in Saliva. J Epidemiol. 2015;25(7):470–474. DOI: http://doi.org/10.2188/jea.JE20140088

De Vriese AS, Stoenoiu MS, Elger M, Devuyst O, Vanholder R, Kriz W, et al. Diabetes-induced microvascular dysfunction in the hydronephrotic kidney: role of nitric oxide. Kidney Int. 2001;60(1):202–210. DOI: http://doi.org/10.1046/j.1523-1755.2001.00787.x

Ekström J, Khosravani N, Castagnola M, Messana I. Saliva and the Control of Its Secretion. In: Ekberg O , editor. Dysphagia, Med. Radiol. Diagnostic Imaging. Berlin Heidelberg: Springer-Verlag; 2011. p. 19–47. DOI: http://doi.org/10.1007/174_2011_481

Ashrafi F, Nematbakhsh M, Nasri H, Talebi A, Mohsen Hosseini S, Ashrafi M. Vacuolization, Dilatation, Hyaline Cast, Debris or Degeneration: Which One Is the Most Correlated Item to Score the Kidney Damage Pathologically in Cisplatin Induced Nephrotoxicity Model? Nephrourol Mon. 2013;5(4):918–920. DOI: http://doi.org/10.5812/numonthly.8623

DOI: http://dx.doi.org/10.21802/gmj.2016.4.9

Copyright (c) 2017 Hanna Ersteniuk, Taras Kotyk, Nilanjan Dey, Omelian Yurakh, Oksana Popadynets

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Free counters!