Reorganization of Intraorganic Blood Vessels of the Bladder in Experimental Diabetes Mellitus
PDF

Keywords

urinary bladder
intraorganic blood vessels
microcirculation
streptozotocin diabetes

Abstract

Objective: To give histologic, morphometric and ultrastructural characteristics of intraorganic hemovessels of the urinary bladder of rats at the stages of streptozotocin diabetes. Material and methods. There were used 70 Wistar male rats; diabetes mellitus was modeled with streptozotocin (60 mg / kg of body weight); material was taken on 14, 28, 42, 56 and 70-th day of experiment; histological, morphometric and electron microscopic research was performed. Results The microscopic, morphometric and ultrastructural peculiarities of transformation of intraorganic blood vessels of rats’ bladder during streptozotocin diabetes were detected. Conclusions: 1) the bladder diabetic microangiopathy is nonspecific process, the specificity of which is determined by the degree of expressiveness of vascular disorders which are characterized by these: a) the change of arteriolar vascular tone manifesting itself initially by dilatation, then by decrease of the lumen, then by secondary expansion; b) reconstruction of hemocapillar basal membrane, which becomes thicker 3.22-fold by the end of the experiment, disorganized and lamellar; c) blood rheological disturbances expressed in sludges in particular venules on the 14th day of experiment, on the 28th – in most venules, on the 42nd – also in capillaries, on the 56-70-th  generalized sludge syndrome of all bladder layers appears; 2) diabetic angiopathy is accompanied with swelling of different genesis: interstitial one increases till the 28th day of experiment, since the 42nd  it decreases; since the 42nd day plasma percolation of perivascular connective tissue increases; swelling of endotheliocytes appears on the 28-42th day of diabetes.
https://doi.org/10.21802/gmj.2018.4.12
PDF

References

Alves C, Sobral MM. Autonomic bladder dysfunction in an adolescent with type 1 diabetes. J. Pediatr. Endocrinol. Metab. 2010; 23(4): 401-402. DOI: https://doi.org/10.1515/jpem.2010.062 [PMid:20583546]

Brown JS. Diabetic cystopathy – What does it mean? J. Urology. 2009; 181(1): 13-14. DOI: https://doi.org/10.1016/j.juro.2008.10.078 [PMid:19012909 PMCid:PMC2861857]

Carmines PK. The renal vascular response to diabetes. Cur. Opin. Nephrol. Hypertens. 2010; 19(1): 85-90. DOI: https://doi.org/10.1097/MNH.0b013e32833240fc [PMid:19770755 PMCid:PMC2886724]

Oikawa J, Ukawa S, Ohira H et al. Diabetes mellitus is associated with low secretion rates of immunoglobulin a in saliva. J. Epidemiol. 2015; 25(7): 470-474. DOI: https://doi.org/10.2188/jea.JE20140088 [PMid:26094794 PMCid:PMC4483372]

Yuan Z, Tang Z, He C, Tang W. Diabetic cystopathy: A review. J. of Diabetes. 2015; 7: 442-447. DOI: https://doi.org/10.1111/1753-0407.12272 [PMid:25619174]

Jose B, Karampini E, Pucci M et al. Diabetic cystopathy: do we recognise this in our patients? Pract. Diab. Int. 2011; 28(3): 129-131. DOI: https://doi.org/10.1002/pdi.1575

Christ GJ, Hsieh Y, Zhao W et al. Effects of streptozotocin-induced diabetes on bladder and erectile (dys)function in the same rat in vivo. BJU International. 2006; 97: 1076-1082. DOI: https://doi.org/10.1111/j.1464-410X.2006.06058.x [PMid:16643495]

Ellenbroek JH, Inan EA, Michel MC. A systematic review of urinary bladder hypertrophy in experimental diabetes: Part 2. Comparison of animal models and functional consequences. Neurourology and Urodynamics. 2018. July: 1-15. DOI: https://doi.org/10.1002/nau.23786

Etuk EU, Animals models for studying diabetes mellitus. Agric. Bio. J. N. Am. 2010; 1(2): 130-134.

Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol. R. 2013; 93(1): 137-188. DOI: https://doi.org/10.1152/physrev.00045.2011 [PMid:23303908]

Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin. Diabetes. 2011; 29(3): 116-122. DOI: https://doi.org/10.2337/diaclin.29.3.116

Wu L, Zhang X, Xiao N et al. Functional and Morphological Alterations of the Urinary Bladder in Type 2 Diabetic FVB db/db Mice. J Diabetes Complications. 2016; 30(5): 778-785. DOI: https://doi.org/10.1016/j.jdiacomp.2016.03.003 [PMid:27037041 PMCid:PMC4912852]

Gomez CS, Kanagarajah P, Gousse AE. Bladder dysfunction in patients with diabetes. Curr. Urol. Rep. 2011; 12(6): 419-426. DOI: https://doi.org/10.1007/s11934-011-0214-0 [PMid:21894526]

Hill SR, Fayyard AM, Jones GR. Diabetes mellitus and female lower urinary tract symptoms: a review. Neurourol. Urodynam. 2008; 27: 362-368. DOI: https://doi.org/10.1002/nau.20533 [PMid:18041770]

Hanna-Mitchell AT, Ruiz GW, Danechgari F et al. Impact of diabetes mellitus on bladder uroepithelial cells. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013; 304(2): 84-93. DOI: https://doi.org/10.1152/ajpregu.00129.2012 [PMid:23174855 PMCid:PMC3543662]

Kotyk T. Features of ultrastructural restructuring of hemocapillaries of the submandibular gland in rats in case of diabetes mellitus. J. Educ. Health Sport. 2015; 5(10): 284-290.

Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008; 51(2): 216-226. DOI: https://doi.org/10.1007/s00125-007-0886-7 [PMid:18087688]

Rodrigues AA, Suaid HJ, Tucci SJ et al. Long term evaluation of functional and morphological bladder alterations on alloxan-induced diabetes and aging. Experimental study in rats. Acta Cirurgica Brasileira. 2008; 23: 53-58. DOI: https://doi.org/10.1590/S0102-86502008000700010 [PMid:18516449]

Michel MC, Chess-Williams R, Hegde SS. Are blood vessels a target to treat lower urinary tract dysfunction? Naunyn-Schmiedeberg's Arch. Pharmacol. 2015; 388(7): 687-694. DOI: https://doi.org/10.1007/s00210-015-1137-y [PMid:26026700]

R Core Team R: a language and environment for statistical computing / R Core Team. Vienna, Austria: R Foundation for Statistical Computing. 2015.

Schneider CA, Rasband WS, Eliceiri KW. Nih image to imagej: 25 years of image analysis. Nature Methods. 2012; 9(7): 671-675. DOI: https://doi.org/10.1038/nmeth.2089 [PMid:22930834 PMCid:PMC5554542]

Esteghamati A, Rashidi A, Nikfallah A et al. The association between urodynamic findings and microvascular complications in patients with long-term type 2 diabetes but without voiding symptoms. Diabetes Res. Clin. Pract. 2007; 78(1): 42-50. DOI: https://doi.org/10.1016/j.diabres.2007.02.011 [PMid:17368856]

Tomechko SE, Guiming L, Mingfang T et al. Tissue Specific Dysregulated Protein Subnetworks in Type 2 Diabetic Bladder Urothelium and Detrusor Muscle. Molecular & Cellular Proteomics. 2015; 14(3): 635-645. DOI: https://doi.org/10.1074/mcp.M114.041863 [PMid:25573746 PMCid:PMC4349983]

Wallis R, Wang K, Marandi L et al. Type I diabetes in the BB rat: a polygenic disease. Diabetes. 2009; 8: 1201-1215. DOI: https://doi.org/10.2337/db08-1215

Lee SE, Ma W, Rattigan EM et al. Ultrastructural features of retinal capillary basement membrane thickening in diabetic swine. Ultrastruct. Pathol. 2010; 34(1): 35-41. DOI: https://doi.org/10.3109/01913120903308583 [PMid:20070152 PMCid:PMC3085508]

Bansal R, Agarwal MM, Modi M et al. Urodynamic profile of diabetic patients with lower urinary tract symptoms: association of diabetic cystopathy with autonomic and peripheral neuropathy. Urology. 2011; 77(3): 699-705. DOI: https://doi.org/10.1016/j.urology.2010.04.062 [PMid:21195463]

Vojtková J, Čiljaková M, Bánovčin P. Diabetic microangio-pathy – etiopathogenesis, new possibilities in diagnostics and management. Microangiopathy. InTech. 2012; 37-66.

Wang Y, Deng GG, Davies KP. Novel insights into development of diabetic bladder disorder provided by metabolomic analysis of the rat nondiabetic and diabetic detrusor and urothelial layer. Am J. Physiol Endocrinol Metab. 2016; 311(2): 471-479. DOI: https://doi.org/10.1152/ajpendo.00134.2016 [PMid:27354236 PMCid:PMC5005965]

Balabolkin NY, Klebanova EM, Kremynskaya VM. Pathogenesis of angiopathy in diabetes mellitus. Sakharnyy dyabet. 1999; 1: 2-8.

Blyshchak NB. Diabetic angiopathy. Klinichna anatomiya ta operatyvna khirurhiya. 2012; 11(2): 74-77.

Borys RYa. Qualitative-quantitative changes of the hemomicrocirculatory bed in experimental streptozocin diabetes mellitus. Klinichna anatomiya ta operatyvna khirurhiya. 2011; 10(3): 11-17.

Hanonh VF. Human physiology: manual. VF. Hanonh; perekl. z anhl. [nauk. red. perekladu M. Hzhehotskyy, V. Shevchuk, O. Zayachkivska]. Lviv: BaK. 2002; 784.

Dzhalilova EA, Kryvko YuYa. Ultrastructural characteristics of the capillary units of the left heart departments of white rats in norm and during the early terms of the streptozocin diabetes. Galician Medical Journal. 2010; 17(2): 51-53.

Zhurakivska OYa. Morphofunctional state of the hypothalamic-pituitary system in the postnatal period of ontogenesis in norm and in experimental diabetes mellitus: avtoref. dys. na zdobuttya nauk. stupenya dokt. med nauk: spets. 14.03.01 «Normalna anatomiya». Ivano-Frankivsk. 2013; 35.

Kotyk TL, Tokaruk NS. Study of hemovessels of the submandibular gland and urinary bladder using the original morphometric analysis. Galician Medical Journal. 2015; 22(2): 49-53.

Krutikov ES, Zhytova VA, Krutikova MS. Changes in capillaroscopy in patients with type 1 diabetes mellitus in the development of chronic complications. Mezhdunarodnyy endokrinologicheskiy zhurnal. 2014; 2(58): 40-44.

Kuzmin YV, Slesarevskaya MN, Shabudina NO. Microcirculatory study in the urinary bladder wall in women with diabetic cystopathy. Urologicheskie vedomosti. 2012; 2(3): 14-17.

Kuzmyn YV, Shabudyna NO. Pathogenetic basis for the development of diabetic cystopathy. Eksperymentalnaya i klinicheskaya urologiya. 2014; 4: 92-98.

Matkivskyy RM. Morphology of the sciatic nerve and its microcirculatory channel in normal and in experimental diabetes mellitus: avtoref. dys. na zdobuttya nauk. stupenya kand. med nauk: spets. 14.03.01 «Normalna anatomiya». Vinnytsya. 2010; 19.

Orlovskiy MA. Experimental studies of type 1 diabetes mellitus: the causes of inter- and intraspecific diabetogenic factors (a review of the literature and our own research). Zhurnal AMN Ukrayiny. 2006; 12(2): 255-268.

Zayko MN, Byts YuV, Butenko HM et al. Pathophysiology: Textbook ed. by MN. Zayka i YuV. Bytsia. [3rd ed.]. Medytsyna. 2010; 704.

Pokotylo PB. Angioarchitectonics of the kidney of the rat in norm and in experimental diabetes mellitus: avtoref. dys. na zdobuttya nauk. stupenya kand. med nauk: spets. 14.03.01 «Normalna anatomiya». Lviv. 2013; 19.

Savka II. Morphology of the testicle of the rat and its vascular bed in normal and in streptotsotocin-induced diabetes mellitus: avtoref. dys. na zdobuttya nauk. stupenya kand. med nauk: spets. 14.03.01 «Normalna anatomiya». Lviv. 2014; 20.

Sohuyko YuR. Morphological peculiarities of the liver structure in norm and in experimental diabetic hyperglycemia: avtoref. dys. na zdobuttya nauk. stupenya kand. med nauk: spets. 14.03.01 «Normalna anatomiya». Lviv. 2014; 19.

Belchyna YuB, Sokolova LK, Tronko ND et al. Endothelial dysfunction in the development of diabetic cardiomyopathy in patients with type 1 diabetes. Endokrynolohiya. 2013; 18(1): 44-49.

Shabudina NO, Kuzmin YV, Al-Shukry AS. Peculiarities of urodynamic disorders in patients with diabetic cystopathy. Medytsynskiy vestnik Bashkortostana. 2013; 8(2): 168-172.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Downloads

Download data is not yet available.