Histomorphological Effects of Nicotine on Selected Parts of the Brain of Adult Wistar Rats

John Chukwuma Oyem, Emmanuel Igho Odokuma

Abstract


Nicotine has been defined as a potent parasympathomimetic alkaloid that accumulates in the roots and leaves of Nightshade family of plants Aim: This study was aimed at evaluating the effects of orally ingested nicotine in the histology of hippocampus, substantia nigra and cerebellum.

Materials and Methods: Twenty four adult male Wistar rats (100g – 200g) were randomly divided into 4 groups (group 1 – group 4). Group 1 served as the control group, while groups 2 - 4 were the treated groups. Nicotine was diluted in water and 1ml of the different dosage (2mg/kg/day, 4mg/kg/day and 6mg/kg/day) were administered to the treated groups respectively with the aid of orogastric cannula for 42 days. Animals were euthanized by cervical dislocation at the end of 7, 21 and 42 days so as to demonstrate the dose and time dependant effect of this agent. Brain tissues were harvested, processed and stained using Haematoxylin and eosin according to standard histological techniques. Stained tissue images were captured using digital micrometer eyepiece and cell count was determined using stereological technique.

Statistical analysis: Data obtained were subjected to statistical analysis with the use of statistical package for social sciences (SPSS version 20). Significant differences were obtained using One Way Analysis of Variance with a probability of  0.05 (95% confidence limit) and Tukeys post hoc  test was further used to determine the mean significant differences between specific groups.

Results: Histological findings showed mild, moderate and severe hyperplasia in a dose and time dependant manner. However, observations from quantitative analysisalso revealed a dose and time dependant significant increase in neuronal cell count and cell diameter of the hippocampus, Substantia nigra and cerebellum.

Conclusion: This study has demonstrated that oral exposure of Nicotine in rats display proliferative adaptive changes on the hippocampus, substantia nigra and cerebellum in a dose/time dependent manner.


Keywords


Nicotine; Quantitative analysis; Hippocampus; Substantia nigra; Cerebellum

Full Text:

PDF

References


Center for disease control. State specific prevalence of current cigarettes smoking among adults and their proportion of adults who work in a smoke free environment, USA. MMNR. 2000;200 (49):978-82.

Djordjevic MV, Branneman KD, Hoffman D. Identification and analysis of a nicotine derived N. nitrosamino acid and other nitrosamine acids in tobacco. Carcinogenesis. 1989;10: 1725-1731. DOI: https://doi.org/10.1093/carcin/10.9.1725 [PMid:2766465]

Benowitz NL. Pharmacology of nicotine: addiction and therapeutics. Annual review of pharmacology and toxicology. 1996;280: 1173-1181. DOI: https://doi.org/10.1146/annurev.pa.36.040196.003121

Abel EL. Prenatal effects of alcohol on growth: a brief overwiew. In: marijuana, tobacco, alcohol and reproduction. Fed. Proc. 1983;44: 2318-2312.

Familusi JB, Sinette CH. Febrile convulsions in Ibadan children. Afr. J. Med. Sci. 1977;2: 135-145.

Tomizawa M, Casida JE. Selective toxicity of neonicortinoid attributable to specificity of onset and mammalian nicotinic receptors. Annu. Rev. Entomol. 2003;48: 339-364. DOI: https://doi.org/10.1146/annurev.ento.48.091801.112731 [PMid:12208819]

Schmitz B, Hoffman D. Nitrogen containing compounds in tobacco and tobacco smoke. Chem. Rev. 1977;77: 295-311. DOI: https://doi.org/10.1021/cr60307a001

Tilashalski K, Rodu B, Mayfields. Assessing the nicotine content of smokeless tobacco products. J. Am. Dent Assoc. 1994;125: 590-592, 594. DOI: https://doi.org/10.14219/jada.archive.1994.0095 [PMid:8195501]

Lu, G. H. and Ralapati, S. (1998). Applicaton of high performance capillary electrophoresis to the quantitative analysis of nicotine and profiling of other alkaloids in ATF regulated tobacco electrophoresis. J. Chromatogr. B. Biomed. Sci, Appl. 19: 19-26.

Jacob P, Yu L, Shulgin AT, Benowitz NL. Minor tobacco alkaloids as biomarkers for tobacco use: comparisons of users of cigarettes, smokeless tobacco. Am. J. Pub. Health. 1999;89: 731-736. DOI: https://doi.org/10.2105/AJPH.89.5.731 [PMid:10224986 PMCid:PMC1508721]

Kozlowski KT, Mehta NY, Sweeney CT, et al. Filter ventilation and nicotine content of tobacco in nicotine from Canada, the UK and USA. Tob, Control. 1998;57: 1407-1413.

Stead LF, Perara R, Bullen C, et al.Nicotine replacement therapy for smoking cessation. Cochcrane database Syst Rev. 2008;1: 146. DOI: https://doi.org/10.1002/14651858.CD000146.pub3

Pierce JP, Cummins SE, White MM, et al. Quitlines and nicotine replacement for smoking cessation. Do we need to change policy. Annual review of Public Health. 2012;33: 341-356. DOI: https://doi.org/10.1146/annurev-publhealth-031811-124624 [PMid:22224888]

Heeschen C. Nicotine stimulates angiogenesis and promotes tumpur growth artherosclerosis. Nat. med. 2001;7: 833-839. DOI: https://doi.org/10.1038/89961 [PMid:11433349]

Maisto SA, Galizio M, Connors GJ. Drug use and abuse. 4th ed. Belmont, CA. wadsworth/Thompson learning. 2004;7: 321-329.

Jha P, Chaloupka FJ, Moore J, et al. Disease control properties in developing countries. 2nd ed. Oxford University press, New York. 2006;869-886

Lynch B, Bonnie RJ. Growing up tobacco free. Preventing nicotine addiction in children and in youths. Institute of med. Committee preventing nico addiction Washington DC national press. 1994;2: 29-32.

Hecht SS. Tobacco carcinogens, their biomarkers and tobacco induced cancer. Nat. Rev. Cancer. 2007;3: 733-744. DOI: https://doi.org/10.1038/nrc1190 [PMid:14570033]

Matta SG, Ralfour DJ, Benowitz NL, et al. Guidelines on Nicotine dose selection for in vivo research. Psychopharm. 2007;190: 269-319. DOI: https://doi.org/10.1007/s00213-006-0441-0 [PMid:16896961]

Goldstein MA. Pharmacotherapy for smoking cessation. In: abhrams DB et a l., eds. The tobacco dependence treatment handbook. A guide to best practice Newyork, NY. Gullford press. 2003;230-248.

Morens DM, Grandinetti A, Reed D. Cigarette smoking and protection from Parkinson's disease: false association or etiologic clue? Neuro. 1995; 45:1041-1051. DOI: https://doi.org/10.1212/WNL.45.6.1041

De Michelle G, Filla A,Volpe G. Environmental and genetic risk factors in Parkinson's disease: a case-control study in southern Italy. Mov Disord. 1996;11:17-23. 11.

Hellenbrand W, Seidler A, Robra BP. Smoking and Parkinson's disease: a case-control study in Germany. Int J Epidemiol. 1997;26:328-339. DOI: https://doi.org/10.1093/ije/26.2.328 [PMid:9169168]

Chan DKY, Woo J, Ho S.C. Genetic and environmental risk factors for Parkinson's disease in a Chinese population. J Neurol Neurosurg Psychiatry 1998;65:781-4. 13.

Benedetti MD, Bower JH, Maraganore DM. Smoking, alcohol, and coffee consumption preceding Parkinson's dis- ease: a case-control study. Neurol. 2000;55:1350-1358 DOI: https://doi.org/10.1212/WNL.55.9.1350

Grandinetti A, Morens DM, Reed D. Prospective study of cigarette smoking and the risk of developing idiopathic Parkinson's disease. Am J Epidemiol. 1994;139:1129-1138 DOI: https://doi.org/10.1093/oxfordjournals.aje.a116960 [PMid:8209872]

Jalili S, Sadeghi Y, Hedayat S.vMorphological changes in hippocampus CA1 neurons after nicotine administration in rats Behbood. 2009;13(1): 1-9

Omotoso GO, Adekeye MO, Ariyo AO, et al, Neurohistochemical Studies of Adolescent Rats' Prefrontal Cortex Exposed to Prenatal Nicotine. Ibnosina J. of Med. and Biomedic. Sci. 2014;25 -30.

Tsugunobu A, Hiroyuki K, Kazumi M, Protective effect of IL-18 on Kainate- and IL-1 β- induced cerebellar ataxia in mice. J. of Immunol. 2008;180: 2322-2328. DOI: https://doi.org/10.4049/jimmunol.180.4.2322

De Filippi G, Baldwinson T, Sher E. Nicotinic receptor modulation of neurotransmitter release in the cerebellum. Prog Brain Res. 2005;148: 307-320 DOI: https://doi.org/10.1016/S0079-6123(04)48024-8

Tewari A, Hasan M, Sahai A, et al. White core cerebellum in nicotine treated rats: a histologicalal study. J. Anat. Soc. India. 2010;59(2): 150-153. DOI: https://doi.org/10.1016/S0003-2778(10)80015-2

Chen A, Russell BE, Ronald DR. Long term nicotine exposure reduces Purkinje cell number in the adult rat cerebellar vermis. Neurotoxicol. & Teratol. 2003;25: 325-334. DOI: https://doi.org/10.1016/S0892-0362(02)00350-1

Johnsen JA, and Miller VT, Tobacco intolerance in multiple system atrophy. Neuro 1986;36(7): 986-988. DOI: https://doi.org/10.1212/WNL.36.7.986

Houk K, Oka H, Machio S. The effects of nicotine on a patient with spinocerebellar degeneration in whose symptoms were temporarily exacerbated by cigarette smoking. Rinstio Shinkoigaku. 1993;33:774-776.

Lokanadham S, Kothandaraman U, Chidamabaram R, et al., Long Term Administration of Nicotine in Albino Rat Cerebellum - Histopathological Study. Int. J. Pharm. Sci. Rev. Res. 2015;34(2):114-117.

Mohamed BA, Wasiuddin AK, Anjelika M,et al. In utero exposure to nicotine and chlorpyrifos alone, and in combination produces persistent sensorimotor deficits and Purkinje neuron loss in the cerebellum of adult offspring rats. Arch. Toxicol 2006;80: 620-663 DOI: https://doi.org/10.1007/s00204-006-0077-1 [PMid:16482470]

Brian FF, Diego F, Miranda K, et al. Exposure of Rats to Environmental Tobacco Smoke during Cerebellar Development Alters Behavior and Perturbs Mitochondrial Energetics. Environ Health Perspect 2012;120:1684-1691.

Julian RA, Wooltorton V, Pidoplichko R, et al. Distribution of Nicotinic Acetylcholine Receptor Subtypes in Midbrain Dopamine Areas. The J. of Neuro. 2003;23(8):3176-3185

Corrigall WA. Nicotine self-administration in animals as a dependence model. Nicotine Tob Res 1999;1:11-20 DOI: https://doi.org/10.1080/14622299050011121 [PMid:11072385]

Pontieri FE, Tanda G, Orzi F,et al. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nat. 1996; 382:255-257. DOI: https://doi.org/10.1038/382255a0 [PMid:8717040]

Min-Yau T, Michiel VW, John L, et al. Differential effects of nicotine on the activity of substantia nigra and ventral tegmental area dopaminergic neurons in vitro Acta Neurobiol. 2004;64: 119-130

Mansvelder HD, McGehee DS. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 2000;27: 349-357. DOI: https://doi.org/10.1016/S0896-6273(00)00042-8

Mansvelder HD, Keath JR, McGehee DS. Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 2002;33: 905-919. DOI: https://doi.org/10.1016/S0896-6273(02)00625-6

Fung YK, Lau YS. Effect of nicotine pretreatment on striatal dopaminergic system in rats. Pharmacol Biochem Behav 1989;32: 221-226. DOI: https://doi.org/10.1016/0091-3057(89)90237-2

Sabine ORB, Johannes W, Cesar L, et al. Knock in mice with Leu 9' Ser α4 Nicotinic Receptors: Substantia Nigra dopaminergic neurons are hypersensitive to agonist and lost postnatally. Press. Physiol. Genomics. 2004;4: 156-29.

Nisell M, Nomikos GG, Hestel P, et al. Condition independent sensitization of locomotor stimulation an mesocortical dopamine release following chronic nicotine treatment in rat. Synapse. 1996;22: 369-381. DOI: https://doi.org/10.1002/(SICI)1098-2396(199604)22:4<369::AID-SYN8>3.0.CO;2-9

Bergstrom M, Lunell E, Antoni G, et al. Nicotine deposition and body distribution from a nicotine inhaler and a cigarette studied with positron emission tomography. Clin. Pharmacol. Ther. 1996;59: 593-594. DOI: https://doi.org/10.1016/S0009-9236(96)90188-5

Abrous DN, Adriani W, Marie-Francoise M, et al. Nicotine Self-Administration Impairs Hippocampal Plasticity J. Neurosci.2002;22(9):3656-3662. DOI: https://doi.org/10.1523/JNEUROSCI.22-09-03656.2002

Charles S. Effects of nicotine administration on amyloid precursor protein metabolism, neural cell genesis and acquisition of spatial memory. Malta Med. J. 2011;23(3).

Adeniyi PAO, Musa AA. Comparative effects of smoke and ethanolic extract of Nicotiana tabacum on hippocampus and neurobehaviour of mice. Res. Pharm. Biotech. 2011;35(6): 79-83.

Alim C, Manuela P, Lucian H. The effects of short-term nicotine administration on behavioral and oxidative stress deficiencies induced in a rat model of parkinson's disease Psychiatria Danubina. 2012;24(2): 194-205

Mahar I, Rosemary C, Bagot M, et al. Developmental Hippocampal. Pone. 2012;7:5

Ijomone OM, Olaibi OK, Esomonu UG, et al. Hippocampal and striatal histomorphology following chronic nicotine administration in female and male rats. Ann Neurosci. 2015;22(1): 31-36. DOI: https://doi.org/10.5214/ans.0972.7531.220107 [PMid:26124548 PMCid:PMC4410525]

Martinez FD, Cline M, Burrows B. increased incidence of asthma in children of smoking mothers. Pead. 1992;89: 21-26.

Duriez Q, Crivello F, Mazoyer B. Sex-related and tissue-specific effects of tobacco smoking on brain atrophy: assessment in a large longitudinal cohort of healthy elderly. Front. In aging Neurosci. 2014;6: 299. DOI: https://doi.org/10.3389/fnagi.2014.00299 [PMid:25404916 PMCid:PMC4217345]

Iranloye B, Bolarinwa AF. Effect of nicotine administration on weight and histology of some visceral organs in female albino rats. Nig. J. of Physiol Sci. 2009;24(1): 7-12.

Hanene D, Manel J, Monia D, et al.The effect of nicotine and its interaction with ethanol on biochemical parameters, oxidative damage and histological changes in rats liver. J. Environ Sci Toxicol and food Tech 214;8(1): 72-82.

Khadija MA, Nahla MA, Hamda N. The effect of nicotine on the liver and kidney of prepubertal Sprague dawley rats. FASEB J. 2008;22: 1123-1128.

Animal research ethics. A handbook of USP researchers. 1st ed. Research office publisher, South Pacific. 2005;2: 3-4.

Festing MF. (2006). Design and statistical methods in studies using animal models of development. ILAR J. 47:5-14. DOI: https://doi.org/10.1093/ilar.47.1.5 [PMid:16391426]

Jatinder S. National centre for replacement, refinement, and reduction animals in research. Experimental design/statistics. J. Pharmacol. Pharmacother. 2012;3(1): 87-89.

Obernier JA, Baldwin RL. Establishing an appropriate period of acclimatization following transportation of laboratory animals. ILAR. J. 2008;47(4): 364-369. DOI: https://doi.org/10.1093/ilar.47.4.364

Bayne K, Degreeve P. An overview of global legislation, regulation and policies on the use of animals for scientific research, testing or education. In: handbook of laboratory animal science. 2nd ed. Boca Raton, Florida. 2003;42(4): 126-140.

Reilley JS. Euthanasia of animals used for scientific purposes. 1st ed. ANZCCART, Australia. 2000;1: 11

Burnett D. Crocker J. Specimen handling and preparation for routine diagnostic histopathology. In: The science of laboratory diagnosis. 2nd ed. John Wiley and sons, England. 2005;1: 5-7.

Ekong MB, Peter AI, Akpanabiatu MI, et al. Potency of calabash chalk on liver morphology. J. Med of Res and Prac. 2013;2(7): 1-5.

Omotoso GO, Babalola AA. Histologicalal changes in the cerebelli of adult wistar rats exposed to cigarette smoke. Niger. J. Physiol. Sci. 2014;29.

Kumar, Abbas, Fausto M. Robbins Pathology. In: cellular injury, adaptation and cell death. 8th ed. Churchilllivingstone, Elsevier. 2007;1:3.

Sembulingam K, Sembulingam P. Essentials of Medical Physiology. In: Cerebellum. 6th edition, Jaypee brothers, New Delhi. 2012;150: 863-865. DOI: https://doi.org/10.5005/jp/books/11696

Manto M. Toxic agents causing cerebellar ataxias.Handb. Clin. Neurol. 2012;103: 201-213. DOI: https://doi.org/10.1016/B978-0-444-51892-7.00012-7 [PMid:21827890]

Jacob P, Ulgen M, Gorrrod JW. Metabolism (-) - (5)- nicotine by guinea pig and rat brain, identification of cotinine. Eur. J. Drug. Metab. Pharmacokinet. 1997;22:391-394. DOI: https://doi.org/10.1007/BF03190975 [PMid:9512939]

Molander L, Hansson A, Lunelle E, et al.Pharmacokinetics of nicotine in kidney failure. Clin. Pharmacol. Ther. 2000;68: 250-260. DOI: https://doi.org/10.1067/mcp.2000.109006 [PMid:11014406]

Neal LB, Jane H, Peyton J. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol USA. 2009;192: 29-60. DOI: https://doi.org/10.1007/978-3-540-69248-5_2 [PMid:19184645 PMCid:PMC2953858]

Fonnum F, Lock EA. Cerebellum as a target for toxic substances. Toxicol. Lett. 2000;15: 112-113, 9- 16.

Sadler TW. Medical Embryology. In: birth defects and prenatal diagnosis. 11h edition, Lippincott Williams and Wilkins. 2006;8: 114.

Seja M, Schonewille G, Spitzmaul A, et al."Raising cytosolic Cl(-) in cerebellar granule cells affects their excitability and vestibulo-ocular learning.". The EMBO journal 2012;31 (5): 1217-1230. DOI: https://doi.org/10.1038/emboj.2011.488 [PMid:22252133 PMCid:PMC3297995]

Imosemi IO. The role of antioxidants in cerebellar development. A review of literature. Int. J. Morphol. 2013;31(1):203-210. DOI: https://doi.org/10.4067/S0717-95022013000100034

Standring S.Gray's Anatomy. In: Central Nervous System. 38th ed. Churchill Livingstone. 2009;20: 1124-1125. [PMCid:PMC2672329]

Lee M, Martin-Ruiz C, Graham A, el al. Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain 2002;15:1483-1495 DOI: https://doi.org/10.1093/brain/awf160

Fatemi SH, Halt AR, Realmuto, G., Earle, J., Kist, D. A., Thuras, P. and Merz, A. (2002) Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol. Neurobiol. 22:171-175. DOI: https://doi.org/10.1023/A:1019861721160 [PMid:12363198]

Badley AJ. Estimation of surface area from vertical sections. J. of Microscopy 81;142;259-276. DOI: https://doi.org/10.1111/j.1365-2818.1986.tb04282.x

Krewski D, Yokei RA, Nieboer E. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J. Toxicol. Environ. Health b Crit. Rev. 2007;101:1-269. DOI: https://doi.org/10.1080/10937400701597766 [PMid:18085482 PMCid:PMC2782734]

Rakic P. Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat. Rev. Neurosci. 2002;3 (1): 65-71. DOI: https://doi.org/10.1038/nrn700 [PMid:11823806]

Chummy S. Central Nervous System. In: Last Anatomy. 10th edition. Churchill Livingstone, London. 1999;7:468-472.

Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat. Med. 1998;4:1313-1317. DOI: https://doi.org/10.1038/3305 [PMid:9809557]

Ihunwo AO, Pilay S. Neurogenic sites in the Adult Mammalian central Nervous system. Res. J. Bio. Sci. 2007;2:170-177.

West MJ, Slomianaka L, Gundersen HJG. Unbiased stereologicalal estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionators. Anat. Rec. 1991;231: 482-487. DOI: https://doi.org/10.1002/ar.1092310411 [PMid:1793176]

West MJ. Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci. 1999;22: 51-61. DOI: https://doi.org/10.1016/S0166-2236(98)01362-9

Slotkin TA, Southard MC, Adam, SJ, et al. Alpha7 nicotinic acetylcholine receptors targeted by cholinergic developmental neurotoxicants: nicotine and chlorpyrifos. Brain Res Bull. 2004;64(3):227-235. DOI: https://doi.org/10.1016/j.brainresbull.2004.07.005 [PMid:15464859]

Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. The J. of Comp. Neurol. 1997;387 (2): 167-178. DOI: https://doi.org/10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z

Barbara Y, James, S. L., Alan, S. and John, W. H. (2007). Wheaters functional Histology. In: Central nervous system, 5th ed, Churchill livingstone, Elsevier. 20: 396-397.

Miller LR. Salil KD. Cigarette Smoking and Parkinson's Disease EXCLI J.2007;6:93-99.

Seidl SE, Potashkin JA. The promise of neuroprotective agents in Parkinson's disease. Front Neurol. 2: 68. Nat. Med. 2011;4 :1313-1317.

Levin ED, Rezvani AH, Development of nicotinic drug therapy for cognitive disorders. Eur J Pharmacol. 2000; 393:141-146. DOI: https://doi.org/10.1016/S0014-2999(99)00885-7

Singer S, Rossi S, Verzosa S, et al. Nicotine-induced changes in neurotransmitter levels in brain areas associated with cognitive function. Neurochem. Res. 2004;29:1779-1792. DOI: https://doi.org/10.1023/B:NERE.0000035814.45494.15 [PMid:15453274]

Carlson J, Armstrong B, Switzer RC. Selective neurotoxic effects of nicotine on axons in fasciculus retroflexus further support evidence that this is a weak link in brain across multiple drugs of abuse. Neuropharmacol. 2000;39:2792-2798 DOI: https://doi.org/10.1016/S0028-3908(00)00141-6

Casson RJ, Chidlow G, Ebneter A, et al. Translational neuroprotection research in glaucoma: a review of definitions and principles. Clin. Exp. Ophthalmol. 2012;40 (4): 350-357. DOI: https://doi.org/10.1111/j.1442-9071.2011.02563.x [PMid:22697056]

Adeniyi PA, Ogundele OM. Smoke and ethanolic extract of Nicotiana tabacum altered hippocampal histology and behavior in mice. J. Cell and An. Bio. 2014;8(3): 34-40. DOI: https://doi.org/10.5897/JCAB10.048

Whiteaker D, Davies AR, Marke MJ, et al. An auto radiographic study of the distribution of binding sites for the novel alpha 7 - selective nicotinic radioligand (3H) - methyl caconitine in the mouse brain. Eur. J. Neurosci. 1999;11(8): 2689-2696. DOI: https://doi.org/10.1046/j.1460-9568.1999.00685.x [PMid:10457165]

Jefferey ST, Charles JF, Michael AK, et al. Septal innervations regulates the function of α7 nicotine receptors in CA1 hippocampal interneurons. Exp. Neuro. 2005;195: 342-352. DOI: https://doi.org/10.1016/j.expneurol.2005.05.006 [PMid:16000197]

Picciotto MR, Zoli M. Nicotinic receptors in aging and dementia. J. Neurobiol. 2002;253:641-655. DOI: https://doi.org/10.1002/neu.10102 [PMid:12436427]

Avila AM, Davila-Garcia MI, Ascarrunz VS, et al. Differential regulation of nicotinic acetylcholine receptors in PC12 cells by nicotine and nerve growth factor. Mol Pharmacol. 2003;264:974-986. DOI: https://doi.org/10.1124/mol.64.4.974 [PMid:14500754]

Perry DC, Davila - Garcia MI, Stockmeier CA. et al. Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies. J. Pharmacol. Exp. Ther. 1999;289: 1545-1552. [PMid:10336551]

Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res. Bull.1999;49(6): 377-391. DOI: https://doi.org/10.1016/S0361-9230(99)00072-6




DOI: http://dx.doi.org/10.21802/gmj.2018.2.13

Copyright (c) 2018 John Chukwuma Oyem, Emmanuel Igho Odokuma

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


IFNMU Logo

Free counters!